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Abstract This work focuses on the ultrafast thermomechanical waves generated by the hot electrons excited by
ultrafast, ultra-intense lasers. The dominating effects during the short-time transient, including ultrafast thermaliza-
tion and relaxation between electrons and phonons, result in thermomechanical coupling that cannot be described
by Fourier’s law alone. The various thermomechanical properties are grouped to characterize the ultrafast heating
and deformation. A finite-difference differential formulation is used as a general tool to tackle the new set of coupled
equations that are formulated to describe the severe impingement of a hot-electron blast in the presence of non-
equilibrium heating, rapid expansion/contraction of the metal lattices, phonon relaxation, and thermomechanical
coupling.

Keywords Hot-electron blast · Relaxation · Thermalization · Thermomechanical coupling ·
Volumetric expansion rate

1 Introduction

With the laser pulse shortening into femtoseconds (10−15 s) and the laser intensity elevating beyond petawatts
(1015 W), the ultrafast ultra-intense laser (UUL) has unleashed its full potential in producing extremely clean sur-
faces on virtually any type of material [1–6]. The unique strength of UUL in material processing, as compared
to conventional long-pulse lasers, lies in its extremely short contact with the target. While the locally heated
material may still undergo severe distortion [7,8], [9, Chapt. 5], [10,11] and phase explosion [12–14], the blast-
ing force due to highly heated electrons may blast away the distorted lattices mechanically and/or sputter melts
before the heat-affected zone widely spreads. The opening thus created in the target material is close to that fur-
nished by cold cuts, making UUL much more attractive than conventional lasers with long heating times when
desiring specimen with high finish. To date, ultrafast interactions between UUL and local materials can produce
electric fields on the order of 1011 volts/cm, magnetic fields on the order of 109 Gauss, particle accelerations on
the order of 1025g (with g being gravity of the Earth), local temperature on the order of 1010 K, and local-
ized pressure on the order of 105 GPa (as compared to the ultimate strength of 1–2 GPa for most metals). These
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Fig. 1 (a) Rough surfaces induced by nanosecond lasers due to long heating time and (b) clean surfaces result from ultrashort heating
times by femtosecond lasers. Photos Courtesy of Lawrence Livermore Laboratory, the University of California.

extreme conditions only exist in the core of a star or in the vicinity of black holes. Should the refined mecha-
nisms that control the ultrafast irradiation of intense lasers be fully understood, such extreme conditions could
become possible on earth. This would lead to a significant expansion of the physical contexts under extreme
conditions.

The ways in which heat and load are transmitted through materials play a central role in understanding the
refined mechanisms during ultrafast heating and deformation in the femtosecond domain. To inspire further inter-
est in modeling the various competing mechanisms in the ultrafast processes, grooving on stainless steel by a
nanosecond laser (a) and by a femtosecond laser (b) is shown in Fig. 1 [1]. Prolonged heating by nanosecond
lasers causes melting, resulting in rough surfaces when the liquid phase reconsolidates back into the solid phase,
as shown on the left. On the other hand, the same material processed by a femtosecond laser, as shown on the
right, results in a strikingly smooth surface in the channel. The smooth surface may result from two different
processes. In the first process, there is a spontaneous formation of bubbles in the melt during the femtosec-
ond heating, which drastically increases from about 1 bubble/cm3 to 1026 bubbles/cm3 due to dynamic nucle-
ation [12–14]. The melt is sputtered away as these bubbles rise altogether. The second process, the hot-electron
blast [7–11], results from the nonequilibrium heating of electrons in the femtosecond domain. Fast expansion
of the electron gas results in a high pressure that is exerted on the surfaces of the metal lattices, resulting in
separations of the lattices as the blasting force becomes excessive. In reality, femtosecond processes may be a
combination of both, with the latter being a mechanical process that does not attribute to the phase change of the
material.

The mechanical force generated by femtosecond lasers is counterintuitive in nature. Unlike continuous or
long-pulse laser heating where damage by the thermal process prevails, femtosecond lasers can produce high-
quality surfaces with minimal collateral damage induced by the production of mechanical forces and the
intrinsic effects of these forces on the ultrafast deformation of the lattices. With the fundamental understand-
ing developed in previous works [7,8] of the sub-picosecond transient, this work reinstates the effects of vol-
umetric expansion/contraction of the metal lattices, thermal-wave effect for heat propagation in phonons, and
thermomechanical coupling through the temperature gradient across the metal lattices. These physical mech-
anisms follow the hot-electron blast developed in the femtosecond domain, becoming highly activated shortly
after the laser pulse. The thermomechanical model incorporates all these effects and is able to describe the ultra-
fast thermomechanical response covering approximately three orders of magnitude, from tens of femtoseconds
(where electron-to-phonon interactions dominate) to tens of picoseconds (where phonon-to-phonon interactions
take over). While accommodating the temperature-dependent thermal properties of electrons, the thermophysical
parameters that characterize the ultrafast transient will be extracted in terms of nondimensional groups. Their
values shall be varied over one to two orders of magnitude in studying their effects on the ultrafast heating
and lattice deformation. A finite-difference differential formulation will be developed to tackle the nonlinearly
coupled partial differential equations (PDEs), and the formulation will be extended to study the effect of repet-

123
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itive pulsing, as well as the potential effect of plasma shielding due to the surface ionization induced by the
UUL.

2 Ultrafast heating

A general formulation for femtosecond heating on metals includes thermal relaxation and thermalization between
electrons and phonons (metal lattices) [14,15], energy consumption in support of rapid volumetric expansion/con-
traction of the metal lattices [9], the blasting force exerted on the metal lattices due to the rapid expansion of the hot
electron gas, thermal stresses induced by the temperature gradient in the metal lattices, and temperature-dependent
thermomechanical properties of the lattices [7–11]. Due to the significant deviation of the lattice temperature from
the reference temperature, particularly beyond 10 picoseconds (threshold value of the relaxation time for phonons)
where the metal lattices become highly heated by the hot electrons, the linear theory of thermoelasticity breaks down
and nonlinear coupling between the thermal and mechanical fields becomes intrinsic in ultrafast thermomechanics.
With all these effects interwoven during the ultrafast transient, the field equations governing the ultrafast response
are extremely complicated and nonlinear.

Ultrafast heating is highly nonequilibrium in nature, necessitating separate considerations of energy transport in
electrons and phonons with the electron–phonon thermal coupling:
Electrons –

Ce (Te)
∂Te

∂t
= ∂

∂xj

[
ke (Te, Tl)

∂Te

∂xj

]
− G(Te − Tl) + S(xi, t) with

Ce (Te) = Ce0

(
Te

T0

)
and ke (Te, Tl) = ke0

(
Te

Tl

)
; (1)

Phonons –

− ∂ql
j

∂xj

+ G(Te − Tl) = Cl

∂Tl

∂t
+

(
Clη

κε

)
∂2uj

∂t∂xj

; ql
j + τ

∂ql
j

∂t
= −kl

∂Tl

∂xj

(2)

where C is the volumetric heat capacity, k the thermal conductivity, G the electron–phonon coupling factor, the
subscripts e and l represent electrons and lattices (phonons), respectively, τ the phonon-to-phonon relaxation time,
η the thermomechanical coupling factor, κε the thermal expansion coefficient of strain, and the subscript 0 refers
to the reference state. The electron–phonon coupling factor, G in W/m3K, is a new property in microscale heat
transfer [14–18] that describes the time-rate of exchange of thermal energy between electrons and phonons per unit
volume. Thermal relaxation of electrons is neglected in Eq. 1 since the electron-to-electron relation time is only
a few femtoseconds. On the other hand, consumption of thermal energy in support of the thermal expansion/con-
traction of the lattice volume has now been included in Eq. 2 due to the high time-rate of change of the lattice
volume ∂(∂uj /∂xj )/∂t in the femtosecond domain.1 The heat capacity of electrons (Ce) increases linearly with the
electron temperature as long as Te << TF , with TF = 6.42 × 104 K denoting the Fermi temperature. The thermal
conductivity of electrons (ke) in Eq. 1 results from the asymptotic expansion of the general expression [19] in the
same limit of Te << TF :
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[(
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)2 + 0.16

] 5
4
[(
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)2 + 0.44

] (
Te

TF

)
[(
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)2 + χ2
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)] √(
Te
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)2 + 0.092

∼= Ke0

(
Te

Tl

)
for Te << TF (3)

where χ1 and χ2 are material constants and Ke0 = 0.146794 (χ1/χ2) defines the thermal conductivity at the refer-
ence state. The asymptotic expression shown in Eq. 3 is widely used due to its clear indications that (1) Ke = Ke0

1 During the fast transient in the femtosecond domain, a volumetric strain (∂uj /∂xj ) of the order of nanometers would result in a
strain rate (∂(∂uj /∂xj )/∂t) on the order of 106.
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as the electron and phonon are in thermal equilibrium (Te = Tl) at the reference state, and (2) electron conductivity
can be many times higher than its equilibrium value as Te>>Tl , which is a typical condition during the initial stage
of electron heating by photons since the heat capacity of electrons is about two orders of magnitude lower than that
of phonons. Consequently, electron temperature would easily burst into 103−104 K whereas phonons would still
stay thermally undisturbed. Heating of the metal lattices, as seen in Eq. 1, results from heat flow from hot electrons
to phonons, which is proportional to the temperature difference (Te – Tl) with the proportional constant being the
electron–phonon coupling factor (G). Heating of the metal lattices is thus accomplished in two steps, called the
two-step heating model in microscale heat transfer. In consistency with the assumption of Te << TF behind Eq. 3,
all thermomechanical properties of the metal lattices (phonons) have been treated as constant in the initial stage of
ultrafast heating since the renormalization process in support of the property change is of the order of (Te/TF )2

[7,8,20]. Under constant phonon properties, the heat-flux vector (ql
j ) in phonons can be eliminated from Eq. 2,

resulting in

kl
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∂xj ∂xj

= Cl

(
∂Tl

∂t
+ τ
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[
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[
∂

∂t

(
∂uj

∂xj

)

+ τ
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∂t2

(
∂uj
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)]
. (4)

A number of high-order derivatives result due to the high-rate responses, including the lagging behavior describing
the delayed response between the heat-flux vector and the temperature gradient in heat transport [9,21–23]. Con-
sequently, special methods developed in classical thermoelasticity assuming Fourier’s law heat diffusion, such as
Goodier’s potential or Boussinesq–Papkovich functions [24, Chapt. 3], no longer hold.

The photon energy carried in the laser beam is absorbed by electrons, with the energy absorption rate S decaying
exponentially in space (xi) and Gaussian in time (t). For the case of a single pulse employing the full-width-at-half-
maximum (FWHM) distribution with the initial time shifted from t = 0 to −2tp [14,16], one has

S(xi, t) = 0.94J

(
1 − R

δtp

)
exp

[
−d

δ
− 4 log(2)

(
t

tp

)2
]

(5)

with R being the surface reflectivity, J the laser fluence, δ the radiation penetration depth, d =
√

x2
1 + x2

2 + x2
3 the

distance measured from the laser-heated surface, and tp the pulse duration. The FWHM description aligns the peak
of the laser pulse at t = 0.

3 Ultrafast deformation—electron blast

Electrons can be viewed as a special type of gas surrounding the metal lattices (phonons) [7,10]. When highly
excited, the electron gas rapidly expands, which could result in excessive pressure being exerted on the surfaces of
the metal lattices. The equations describing the motion of the metal lattices can be written as

ρ
∂2ui

∂t2 = ∂σij

∂xj

+ ∂Pe

∂xi

, with σij = λ

(
∂uk

∂xk

)
δij + µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
− κσ (Tl − T0) δij (6)

where ρ is the mass density, ui is the displacement vector of the metal lattice, σij is the Cauchy stress tensor, λ and
µ are the Lamé constants, κσ is the thermal expansion coefficient of stress. Kinetic pressure of the electron gas is
represented by Pe,

Pe = nkBTe with n = π2N

3

(
Te

TF

)
⇒ Pe = �T 2

e with � = π2NkB

3TF

(7)

with n representing the number density of electrons proportional to the electron temperature (Te) and number den-
sity of atoms (N ) and kB representing the Boltzmann constant. Neglecting the quantum effect, Eq. 7 can be viewed
as the equation of state for the electron gas, where the kinetic pressure of electrons is proportional to the electron
temperature squared. Substituting Eq. 7 into Eq. 6 results in
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ρ
∂2ui

∂t2 = ∂σij

∂xj

+ 2�Te

(
∂Te

∂xi

)
, (8)

which displays a driving force due to the rapid expansion of hot electrons. Such a blasting force exerting on the
lattice surfaces is proportional to both the temperature and temperature gradient of the electron gas, which will be
significant in the early stages of electron heating as described by Eq. 1. Combination of the two equations in Eq. 6
gives

ρ
∂2ui

∂t2 = (λ + µ)
∂

∂xi

(
∂uk

∂xk

)
+ µ

∂2ui

∂xj ∂xj

+ �Te

∂Te

∂xi

− κσ

∂Tl

∂xi

(9)

which includes explicit effects from both Te (through the hot-electron blast) and Tl (thermomechanical coupling)
on the motion of the metal lattices.

Equations 1, 4, and 9 were derived from the Boltzmann transport equation [15] and the nonequilibrium partition
functions for electrons [20]. Rather than solving them in the microstructural frameworks for electrons and phonons,
the continuum formulation as shown absorbs the microstructural effects in additional terms led by the new coeffi-
cients. They are the relaxation time (τ) and electron–phonon coupling factor (G) in Eq. 4 and the electron pressure
constant (�) in Eq. 9. This formulation should hold as long as the physical ground for stress (and consequently the
elastic moduli in general) and temperature (hence the thermal conductivity or diffusivity) holds, which, however,
will break down as the conductor is composed of only a few lattices.

4 One-dimensional example

Unique features in ultrafast heating and deformation, as shown by Eqs. 1, 4, and 9, lie in the thermomechanical
response in time. Consideration of a one-dimensional case, in space, therefore, is sufficient to develop the full reso-
lution during the ultrafast transient. Considering the lattice motion in a one-dimensional film with lateral constraints,
the plane-strain condition applies and the one-dimensional forms of Eqs. 1, 4, and 9 are
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(
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∂Te
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)
, with E1 = E(1 − ν)

(1 + ν)(1 − 2ν)
, E2 = E

1 − 2ν
. (10)

The spatial variable x in (10) describes the distance measured from x = 0, the surface subject to the laser irradiation.
Heat loss from the film surfaces is negligible during the femtosecond transient,

∂Te

∂x
= 0, ql = 0 at x = 0 and x = l (11)

with l denoting the film thickness. The front and rear surfaces of the film are assumed strain-free,

∂u

∂x
= 0 at x = 0 and x = l, (12)

123



236 D. Y. Tzou, E. J. Pfautsch

whereas the film is assumed to be heated from a stationary state:

Te = T0, Tl = T0,
∂Tl

∂t
= 0, and

∂u

∂t
= 0 as t = t0 = −2tp. (13)

The strain-free boundary conditions described in Eq. 12 are employed to tackle the ultrafast response in a simpler
situation. For stress-free conditions, Eq. 12 is replaced by

σ = E1
∂u

∂x
− E2κεTl = 0, or

∂u

∂x
=

(
E2

E1

)
κεTl at x = 0 and x = l (14)

which relate the surface strains to the surface temperatures of phonons.
To characterize the ultrafast response in terms of the dominating parameters, Eqs. 10–13 are made dimensionless

by introducing

ξ = x

δ
, β = t

tp
, θe(l) = Te(l)

T0
, U = u(

�T 2
0 t2

p/ρδ
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,

S = 0.94J
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)
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δ
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,
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ρδ2κε

�T0t2
p

) , � = τ
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, Y1 = E1t

2
p

ρδ2 , Y2 = E2κε

�T0
, (15)

Equations 10–13 become

θe

∂θe

∂β
= K

∂

∂ξ

(
θe

θl

∂θe

∂ξ

)
− H (θe − θl) + S exp

[
−ξ − 4 log(2)β2

]
,
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∂2θl

∂ξ2 = �
∂2θl

∂β2 + ∂θl

∂β
− HC

[
(θe − θl) + �

∂

∂β
(θe − θl)

]
+ M

(
∂2U

∂β∂ξ
+ �

∂3U

∂β2∂ξ

)
,

∂2U

∂β2 − Y1
∂2U

∂ξ2 + Y2
∂θl

∂ξ
= 2θe

∂θe

∂ξ
. (16)

Ultrafast heating and deformation is thus characterized by seven parameters: K (nondimensional thermal diffu-
sivity of electrons), H (nondimensional electron–phonon coupling factor), S (nondimensional laser fluence), C

(heat-capacity ratio), � (nondimensional relaxation time of phonons), M(nondimensional group of thermomechan-
ical coupling), Y1 (nondimensional elastic modulus), and Y2 (nondimensional thermoelastic modulus). Equation 16
provides three equations to be solved for three unknowns, θe, θl , and U , subjected to the initial and boundary
conditions:

θe = θl = 1,
∂θl

∂β
= 0, and

∂U

∂β
= 0 as β = −2; (17)

∂θe

∂ξ
= 0,

∂θl

∂ξ
= 0,

∂U

∂ξ
= 0 at ξ = 0 and x = L. (18)

4.1 Surface ionization

In-depth processing of materials by UUL, as shown by the metal grooving in Fig. 1, involves repetitive applications
of a series of laser pulses. For UUL beyond terawatts, surface ionization (plasma formation) is possible after the first
few pulses, which forms a layer of ion clouds that shields the metal surface from the subsequent laser pulses. The
energy absorption rate by electrons, as described by the last term in the first expression of Eq. 10 or 16, therefore,
needs to be modified to account for the energy dissipation through the plasma. A phenomenological approach is to
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accommodate the length-absorption coefficient (αp, in m−1) and the plasma formation time (ti , in seconds) in the
energy absorption rate in electrons [25]:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.94J

(
1 − R

δtp

)
exp

[
−x

δ
− 4 log(2)

(
t

tp

)2
]

for t < ti

0.94J

(
1 − R

δtp

)
exp

[
−x

δ
− 4 log(2)

(
t

tp

)2
]

× exp
[−αpc (t − ti )

]
for t ≥ ti

= Sfs(ξ, β);

fs(ξ, β) =
{

exp
[−ξ − 4 log(2)β2

]
for β < βi

exp
[−ξ − 4 log(2)β2

] × exp [−A (β − βi)] for β ≥ βi

(19)

where A = αpctp and βi = ti/tp, with c denoting the speed of light. The effect of energy dissipation in plasma is
described by the normalized intensity function fs , which is characterized by two additional parameters: the nondi-
mensional plasma absorption coefficient (A) and the nondimensional plasma-formation time (βi). Both values are
material-dependent. With the energy intensity remaining the same before the plasma formation (β < βi), as shown
in Figs. 8 and 9, the energy absorbed by electrons can be significantly reduced after the plasma formation (β ≥ βi).
Reduction of the energy intensity is more significant under a larger value of A (stronger dissipation in plasma) or a
smaller value of βi (earlier shielding by plasma). For the subsequent laser pulse blocked by the plasma layer, Eq. 19
replaces the last term of the first expression in Eq. 16.

A quantitative analysis for the plasma formation involves more than a simple modification of the energy-absorp-
tion rate. It involves a fluidized heat-transfer model for the ionic flows, along with the physical onset for ionization,
as well as the additional conservation law for charges. Further complications also include the ablated materials
mixing with the ions, which makes the fluidized ionic flow two-phase by nature. Such a general approach adds an
additional set of conservation equations to Eq. 16, which will appear in another work in progress.

4.2 Finite-difference differential formulation

Even without incorporating the temperature-dependence of lattice properties, Eq. 16 displays a set of three non-
linearly coupled PDEs. Continuing the previous efforts in developing efficient numerical algorithms to resolve the
various tangling effects [7–11], the nonlinearly coupled PDE will be solved in this work by the combined finite-
difference differential method [26, Chapt. 20]. The idea is simple and intuitive. We apply the central-difference
formula to approximate all the space (ξ) derivatives in Eq. 16, which results in a set of nonlinear coupled ordinary
differential equations (ODE) in the time (β) domain. The resulting ODEs in β are then solved by standard ODE
solvers, such as NDSolve in Mathematica [27]. Decomposing the film thickness (L) into N nodes, with i being
the nodal number,

∂2Xi

∂ξ
→ Xi+1 + Xi−1 − 2Xi

(�ξ)2 ,
∂Xi

∂ξ
→ Xi+1 − Xi−1

2 (�ξ)
, �ξ = L

N − 1
(20)

the equations of (16) become
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e
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⎧⎨
⎩

(
θi
e
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l
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e
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]
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l

[
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e

2 (�ξ)

]2

−
[

θi
e

(θ i
l )

2

]⎡
⎣

(
θi+1
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e

) (
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l − θi−1

l

)
4 (�ξ)2

⎤
⎦
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(
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l

)
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,
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�
d2θi
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dβ2 + dθi
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= KC

[
θi+1
l + θi−1

l − 2θi
l

(�ξ)2

]
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− M�
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2 (�ξ)

]
,
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e
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e
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]
+Y1

[
Ui+1+Ui−1−2Ui
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]
−Y2

[
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l −θi−1

l

2 (�ξ)

]
, i = 2, 3, . . . , (N−1). (21)

The zero slopes in Eq. 18 are assured by applying the forward-difference formula:

θ1
e (β) = θ2

e (β), θ1
l (β) = θ2

l (β), U1(β) = U2(β), θN
e (β) = θN−1

e (β)

θN
l (β) = θN−1

l (β), UN(β) = UN−1(β). (22)

Equations 21 and 22 provide 3N ordinary differential equations, in β (time), to be solved for θi
e(β), θ i

l (β), and
Ui(β), each of which satisfying the initial conditions in (17):

θi
e = θi

l = 1,
dθi

l

dβ
= 0, and

dUi

dβ
= 0 as β = −2, i = 1, 2, . . . , N. (23)

The coupled set of ODEs in β are solved by a direct use of NDSolve in Mathematica, which adapts the step size
so that the estimated error in the solution is within the tolerances specified by PrecisionGoal (for suppressing the
relative local error allowed at each step) and AccuracyGoal (for suppressing the absolute local error allowed at each
step). The value of N is continuously doubled until convergence of the solutions is achieved. The results presented
in this work result from the use of N = 40. The finite-difference differential formulation shown in (21) is similar to
the method of lines encoded in NDSolve for solving partial differential equations. The formulation is particularly
suitable for studying the ultrafast response with complicated structures in time, including those resulting from the
combined behavior of thermalization and relaxation in microscale heat transfer [26]. Due to effective reductions of
PDEs, either linear or nonlinear, to ODEs whose solution algorithms are much better developed, the finite-difference
differential method has been extended, and well tested, for various problems in classical elasticity (direct solutions
to Navier’s equations), fluid mechanics (Navier–Stokes equations with nonlinear coupling and/or injection/suction
at the boundaries), and heat-transfer (direct calculation of the heat-transfer coefficient in the presence of boundary
slippage). Direct use of NDSolve in Mathematica using this approach has been shown to be capable of tackling
solutions that were not possible before. It can be used in place of the experience-dependent approaches such as
the semi-inverse method in elasticity/thermoelasticity or the similarity solutions in fluid mechanics/heat transfer,
which are often difficult to beginners.

5 Numerical results

Numerical solutions to Eqs. 21–23 are obtained for a gold film with the following thermal and optical proper-
ties: ke0 = 315 W/mK, Ce0 = 2.1 × 104 J/m3 K, τ = 10 ps, Cl = 2.5 × 106 J/m3 K, g = 2.6 × 1016 J/m3 K,
δ = 15.3 nm, R = 0.93, T0 = 300 K, and l = 0.02 µm [7–9]. Mechanical properties for gold are E = 79 GPa,
ν = 0.42, κε = 14.2 × 10−6, and � = 105 J/m3 K. The laser fluence is taken to be J = 732 J/m2. The non-
dimensional parameters are thus H ∼= 0.124, K ∼= 6.41, C ∼= 8.4 × 10−3, � ∼= 100, M = 6.4915 × 10−5,
Y1 = 4.46376 × 10−4, Y2 = 0.27156, S0 = 500, and L = 1.307. These values will be used throughout the
numerical analyses, unless stated otherwise.

Electron and phonon temperatures are not sensitive to K , C, and � [7,8] during ultrafast heating. Varying each
of these parameters individually by 2 to 3 orders of magnitude only affects the temperature response by less than
20% with all the qualitative trends remaining the same. The effect of H is shown in Fig. 2(a), where electron and
phonon temperatures are grouped with the same value of H , represented by similar line styles. For conversions to
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Fig. 2 Non-equilibrium heating of electrons and phonons: (a) Effect of H , (b) effect of M , and (c) effect of Y1, and (d) effect of L.
Other parameters are not sensitive

real scales, β = 1 is equivalent to t = 0.1 ps and θe,l = 1 is equivalent to Te,l = 300 K. The electron temperature
decreases very rapidly as the value of H(∼G) increases, since a larger value of H implies a higher rate of energy
flow from electrons to phonons. The peak temperature of electrons also decreases as the value of H increases. On
the contrary, as phonons receive the energy from electrons at a higher rate, their temperatures increase with the
value of H . The thermalization time between electrons and phonons, i.e., the time at which θe = θl , decreases as
the value of H increases. For H = 1.24, as shown by the dashed line in Fig. 2(a), thermal equilibrium between
electrons and phonons is achieved as β ∼= 25 (t = 2.5 ps).

Parameter M measures the effect of energy consumed in support of the ultrafast expansion of the lattice volumes
in ultrafast heating, which has often been neglected in classical thermoelasticity. It is an explicit parameter appearing
in Eq. 16, the energy equation for phonons, which has been recovered to account for the large volumetric strain
rate of phonons during the femtosecond transient. The electron temperature is almost unaffected as the value of
M increases by two orders of magnitude, which is shown in Fig. 2(b). The phonon temperature, however, starts to
oscillate as M increases to 6.4915 × 10−3 due to the high-frequency expansion/contraction of the metal lattices in
high-rate heating. The overall sensitivity of electron/phonon temperatures to M is far less than that to H .

Parameter Y1 does not appear explicitly in the energy equation for phonons, Eq. 16, but it could affect the phonon
temperature through the volumetric strain rate, M ∂2U

∂β∂ξ
, in Eq. 16. In the medium case of M = 6.4915 × 10−4, Fig.

2(c), oscillations in the phonon temperature (due to the expansion/contraction of the metal lattices shown in Fig.
2(b)) are effectively suppressed as the value of Y1 increases from 4.46376×10−4 to 6.69564×10−3. The parameter
Y1 can also be viewed as the nondimensional dilatational wave speed squared. A larger value of Y1 implies a faster
speed of dilatational waves, which would bounce more frequently between the front and rear surfaces of the film
under the same thickness. Consequently, the ripples in the phonon temperature are flattened by the reflected waves in
the case of a larger value of Y1. The change in the magnitude of phonon temperatures through the indirect strain-rate
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Fig. 3 Straining patterns, U ′(ξ, β), developed in the gold film—Effect of H

coupling, however, is less than 10% at all times. Through the same coupling factor M , neither the electron nor the
phonon temperature varies appreciably as the value of Y2 increases/decreases by two orders of magnitude from the
threshold.

Figure 2(d) displays the effect of film thickness on the electron and phonon temperatures. A thicker film, as
expected, results in a lower temperature for both electrons and phonons due to the larger physical domain in dissi-
pating heat by conduction. Note that thermalization between electrons and phonons is significantly faster in thinner
films, at β ∼= 150 (15 ps) in the case of L = 6.52(0.1 µm) as compared to β ∼= 300 in the case of L = 1.307.

Parameter H is an explicit parameter characterizing the electron (θe) and phonon (θl) temperatures in (16),
having drastic effects on the electron and phonon temperatures as shown in Fig. 2(a). With regard to the ultrafast
deformation in the gold film, on the other hand, the parameter H becomes an implicit parameter, which enters
the equation of motion through the gradients of θe and θl . Figure 3 describes the straining patterns developed in
the gold film as the parameter H varies from 0 (no energy exchange between electrons and phonons) to 12.4. The
hot-electron blast, 2θe∂θe/∂ξ in Eq. 16, introduces compressive strains (U ′ < 0) on the initial contact (β = 0)
with the film (near ξ = 0), as indicated in Fig. 3(a). The peak of the compressive strain is located between the
characteristic lines of thermal and mechanical waves [7,8]. After the initial compressive strain near the front surface,
two tensile ripples follow, in the direction of increasing time (β increases) or in the direction toward the interior of
the film (ξ increases). Another compressive ripple results near the back surface of the film (ξ > 0.8) at longer times
(β > 20). Such alterations between compressive and tensile strains prevail in the temporal and spatial directions,
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Fig. 4 Straining patterns, U ′(ξ, β), developed in the gold film—Effect of M

which become even more exaggerated at longer times due to reflections of the displacement waves from the front
(ξ = 0) and rear (ξ = 1.307) surfaces of the film. As the value of H increases, the peak values of compressive and
tensile strains slightly increase. All qualitative features of the straining patterns, however, remain the same.

The volumetric expansion/contraction rate characterized by the parameter M in Eq. 16 has pronounced effects
on the straining patterns, as shown in Fig. 4. As the value of M increases from 6.4915 × 10−5 to 6.4915 × 10−3,
with the initial compressive strain prevailing near the front surface of the film, the volumetric expansion/contraction
rate effectively suppresses the tensile strains and produces a plateau in the interior of the film for β > 20. The
plateau results from the sign change of (∂θl/∂ξ), as shown in Fig. 2(b). The compressive (tensile) strains in place
are cancelled by the tensile (compressive) strains as the time-rate of change of the temperature gradient switches
its sign.

The value of M is increased from the threshold 6.4915 × 10−5 to 6.4915 × 10−4 in Fig. 5 to better describe
the effect of thermal waves. In the presence of thermal relaxation in phonons, referring to the second expression
in Eq. 16, the nondimensional thermal-wave speed is

√
KC/�, with � being the nondimensional relaxation time

of phonons. When assuming an infinite speed of heat propagation, Fouriers law is recovered as � → 0, which
corresponds to the case with a smaller value of � in Fig. 5(a). In the presence of a stronger effect from the volu-
metric expansion/contraction rate, M = 6.4915 × 10−4 as compared to the threshold of 6.4915 × 10−5 for gold,
compressive strain induced by the thermomechanical coupling from Fourier diffusion is suppressed in the interior
of the film at longer times, 0.8 < ξ < 1 and β > 25 in Fig. 5(a). As the effect of thermal relaxation in phonons
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Fig. 5 Strain (U ′(ξ, β)) and stress (�(ξ, β)) patterns developed in the gold film—Effect of � for M = 6.4915 × 10−4

becomes strong, � = 104 in Fig. 5(b) with the characteristic line of thermal waves located at ξ ± 2.32 × 10−3β,
strong compression in front of the thermal wave recovers the compressive strain, showing a deep valley behind the
two tensile ripples (U ′ > 0) in Fig. 5(b). Thermal stresses can be calculated from the generalized Hooke’s law,

σ = E1
∂u

∂x
− E2κε (Tl − T0) , or � = Y1

(
∂U

∂ξ

)
− Y2 (θl − 1) with � = σ

�T 2
0

. (24)

For � = 100, the case approaching Fourier diffusion in correspondence with Fig. 5(a), Fig. 5(c) displays the
thermal-stress pattern developed in the thin film. With severe compression (� < 0 of several GPa) induced by the
hot-electron blast in the same location, the surface warping in the interior of the film at longer times, 0.8 < ξ < 1
and β > 25 in Fig. 5(a), now becomes even more obvious due to the direct involvement of the lattice temperature
in Eq. 24. For � = 10000, likewise, strong compression ahead of the thermal wavefront straightens the wiggling
surface, resulting in two distinct valleys in compression. One valley nears the front surface at short times, which is
induced by the hot-electron blast, and another valley nears the rear surface at long times, which is contributed by the
reflected waves from the rear surface of the film. In comparison with the compressive strains shown in Figs. 5(a) and
5(b), tensile stresses (� > 0) only exist near the peak at short times in Figs. 5(c) and 5(d). The magnitude of tension,
however, is about one order of magnitude lower than that of compression. Tensile stresses in the physical domain
with compressive strains result from the oscillation of the lattice-temperature shown in Fig. 2(b). The thermal stress

is positive (� > 0) in the physical domain where θl < 1 +
(

Y1
Y2

) (
∂U
∂ξ

)
with

(
∂U
∂ξ

)
< 0.

A faster wave (larger values of Y1) under the same film thickness, or a thinner film (smaller values of L) under
the same wave speed, implies more frequent reflections of dilatational waves between the front and rear surfaces
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Fig. 6 Effect of Y1 on straining of the gold film, (a) and (b), and a similar effect in reduction of the film thickness, (b) and (c)

of the film. Therefore, more frequent sign changes in strain are expected under these conditions. Figure 6 illus-
trates this behavior by increasing the value of Y1 from 4.46376 × 10−4, Fig. 6(a), to 4.46376 × 10−3, Fig. 6(b),
under the same value of L (1.307). As the value of Y1 increases by one order of magnitude, the number of strain
ripples doubles. A similar behavior can be observed in Figs. 6(a) and 6(c), where the film thickness is reduced
by a factor of three under the same value of Y1(4.46376 × 10−4). More frequent sweeping of dilatational waves
across the film results in four pairs of compression-tension waves in the physical domain of 0 < ξ < 1.307
and 0 < β < 40.

Parameter Y2, the nondimensional thermoelastic modulus, is one of the two explicit parameters in the equa-
tion of motion. It does not have a remarkable effect on the electron or phonon temperatures, but it will have
a more pronounced effect in the ultrafast deformation of the thin film. Figure 7 shows the effect of Y2 on the
straining patterns as its value is increased by two orders of magnitude, from Y2 = 0.27156 (Fig. 7(a)) to 27.156
(Fig. 7(c)). With the initial compressive strain (peaked as β ∼= 11) near the front surface and the initial ten-
sile strain near the rear surface (at ξ ∼= 1.16) remaining, the effect of the thermoelastic modulus is mainly in
the interior of the film and at longer times. For Y2 = 27.156, Fig. 7(c), the larger temperature gradient of pho-
nons developed in the interior of the film, i.e., larger values of ∂θl/∂ξ in Eq. 16, shrinks the compressive region
near the rear surface of the film at longer times, making the strain pattern much flatter in 0.5 < ξ < 1.2 and
25 < β < 40. A large tensile region (U ′ > 0), in fact, exists in this area in place of the compressive region in Figs. 7(a)
and 7(b).
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Fig. 7 Effect of Y2 on straining of the gold film: (a) Y2 = 0.27156, (b) Y2 = 2.7156, and (c) Y2 = 27.156

The effect of ion formation in repetitive pulsing, from the use of Eq. 19 instead of the last term in the first
expression of Eq. 16, is shown in Figs. 8 and 9. All threshold values used in Fig. 3(b) are recovered. For the case
that surface ionization occurs after βi ≥ 0.2, Fig. 8 shows the effect of A on the straining patterns developed in the
thin film. As the value of A increases from 0 (no ionization) to 50, there is stronger absorption of photons by plasma
before the laser pulse reaches the front surface, and the peak values of strain developed at later times decrease by
about 35%. This is due to the strong absorption of photons by ions for βi ≥ 0.2, and consequently the drastic
reduction of the energy density, as shown in Fig. 8, is in correspondence. The identical pulse shape (energy density)
for −2 < βi < 0.2 (before the ionization) is responsible for the preservation of all qualitative features, particularly
the strong compression induced by the hot-electron blast near the front surface at short times, which changes little
as the value of A increases from 0 to 50.

Under a constant length-absorption coefficient in plasma,A = 5, Fig. 9 displays the effect of the plasma-formation
time. Again, the normalized energy-density function is attached correspondingly as the value of βi increases from
0.1, 0.5, to 1. Earlier formation of plasma, βi = 0.1 in Fig. 9(a), implies a longer shielding time from the laser pulse.
Consequently, it weakens the strain level developed in the thin film. The energy density is gradually recovered as the
plasma-formation time lengthens, which corresponds to materials with higher ionization energy. Plasma formation
in the case of βi = 1, Fig. 9(c), is so late that the full pulse shape is almost recovered, resulting in the same response
as that shown in Fig. 3(b) without plasma shielding.
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Fig. 8 Effect of plasma absorption: (a) A = 0 (no absorption), (b) A = 5, and (c) A = 50 with β = 0.2. The normalized energy density
function is attached in correspondence. H = 0.124, K = 6.41, C = 8.4×10−3, � = 100, M = 6.4915×10−5, Y1 = 4.46376×10−4,
Y2 = 0.27156, S0 = 500, and L = 1.307

6 Discussion and conclusion

Physical phenomena of the hot-electron blast induced by ultrafast, ultraintense lasers have been further explored to
include the finite speed of heat propagation in phonons, energy consumption in support of the volumetric expan-
sion/contraction of the metal lattices, thermomechanical coupling, and thermal relaxation of phonons. The ultrafast
heating and deformation are characterized by seven nondimensional groups: thermal diffusivity of
electrons (K), electron-phonon coupling factor (H ), laser intensity (S), heat-capacity ratio (C), relaxation time
of phonons (�), thermomechanical coupling factor (M), elastic modulus (Y1), and thermoelastic modulus (Y2).
Ultrafast heating of phonons is sensitive to the parameters H , M , Y , and L (film thickness), whereas ultrafast
deformation is sensitive to M , �, Y1 and Y2. Three-dimensional surfaces have been prepared to examine their
effects simultaneously in both space and time domains. Nonequilibrium heating emphasizes different temperatures
of phonons and electrons before they come to thermal equilibrium. Inertia effects during lattice motion and volu-
metric expansion rate effects, which have often been neglected in classical thermoelasticity, have been found to be
important in ultrafast deformation. A phenomenological approach has been adopted to assess the effect of surface
to be ionization induced by high-intensity lasers. This approach modifies the energy-absorption rate through the
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Fig. 9 Effect of plasma-formation time: (a) βi = 0.1, (b) βi = 0.5, and (c) βi = 1 with A = 5. H = 0.124, K = 6.41, C = 8.4×10−3,
� = 100, M = 6.4915 × 10−5, Y1 = 4.46376 × 10−4, Y2 = 0.27156, S0 = 500, and L = 1.307

plasma absorption coefficient and the plasma-formation time, which can only be viewed as approximate, due to the
absence of a detailed analysis of the ionic flows above the metal target.

Thermal stresses have always been difficult and complicated due to the coupling of thermal and mechanical fields
and the employment of semi-empirical methods, both of which can hardly be extended universally. The finite-dif-
ference differential method employed in this work continues our efforts in microscale heat transfer by reducing the
coupled PDEs to ODEs in time, which can be handled by most of the ODE solvers currently available. For easy
access, we employed Mathematica in this work after previous implementations in IMSL and Matlab. In tackling
problems with complicated structures in time, this approach has been found effective and especially suitable for
beginners, facilitating a better focus on understanding the ultrafast response rather than being distracted by the
various numerical algorithms for solving the nonlinearly coupled partial differential equations. Special caution,
however, remains to be exercised, because the built-in subroutines in existing numerical packages, including those
mentioned above, may yield questionable solutions as some parameters enter the unstable regime. With the numer-
ical solutions thoroughly examined by different subroutines used in different packages, a detailed understanding
of the method employed in those subroutines, the method of lines in Mathematica, for example, is critical and
irreplaceable.
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